© Ольшевский Андрей Георгиевич Консультирую по скайп: da.irk.ru Сайт www.super-code.ru наполняется бесплатными материалами

Формулы физики 7, 8, 9, 10, 11 класс

Оглавление

<u>7 класс</u> 17
<u>Цена деления</u> 17
Погрешность измерения17
Запись величины, с учетом погрешности17
<u>Скорость</u> 17
<u>Плотность</u>
<u>Сила упругости. Закон Гука</u> 19
<u>Вес тела</u>

<u>Сила тяжести</u>	19
<u>Давление</u>	19
<u>Давление жидкости</u>	19
Сила Архимеда	19
Механическая работа	20
<u>Мощность</u>	20
<u>Момент силы</u>	20
Коэффициент полезного действия	20

<u>Потенциальная энергия</u> 20
Кинетическая энергия21
<u>8 класс</u>
<u>Калория</u> 21
<u>Удельная теплоемкость вещества</u> 21
Теплота, необходимая для нагревания (охлаждения) тела21
<u>Удельная теплота сгорания</u> 21
<u>Теплота, выделяемая при сгорании топлива</u> 21

Полная механическая энергия
Закон сохранения энергии22
<u>Теплота плавления</u>
Абсолютная влажность воздуха
Относительная влажность22
<u>Теплота парообразования и конденсации</u> 22
<u>Двигатель внутреннего сгорания</u> 22
Коэффициент полезного действия23

Закон сохранения электрического заряда23
<u>Сила тока</u>
Электрическое напряжение24
Закон Ома для участка цепи24
<u>Сопротивление</u> 24
Последовательное соединение24
Параллельное соединение25
Работа электрического тока25

Мощность электрического тока
Закон Джоуля-Ленца25
Угол отражения равен углу падения
Закон преломления света
Оптическая сила линзы25
<u>Работа газа и пара при расширении</u> 26
<u>КПД теплового двигателя</u> 26
9 класс

<u>Материальная точка</u>	27
Путь и перемещение	27
Скорость при прямолинейном равномерном движении	28
Первый закон Ньютона. Инерциальные системы отсчета	28
Закон всемирного тяготения	28
Ускорение свободного падения	28
<u> Центростремительное ускорение</u>	30
<u> Центростремительная сила</u>	30

Гервая космическая скорость. 3	31
Імпульс	31
акон сохранения импульса	31
<u> Математическая запись закона сохранения механической энергии.</u>	32
<u>Гериод</u>	32
Свободные колебания	32
олебательные системы	32
оложение равновесия	32

<u>Амплитуда колебаний</u> 32	2
<u>Частота</u>	3
Собственная частота колебаний	3
Противоположные фазы	3
Одинаковые фазы	4
<u>Разность фаз</u>	4
<u>Гармонические колебания</u> 34	4
Определение периода по времени полных колебаний	5

Затухающие колебания36
Вынужденные колебания
Установившиеся вынужденные колебания36
<u>Резонанс</u>
<u>Волны</u>
<u>Упругие волны</u>
Продольные и поперечные волны
Звуковые колебания

Скорость распространения волны	8
Правило левой руки3	9
Магнитная индукция	9
<u>Магнитный поток</u> 4	0
Электромагнитная индукция4	0
Правило Ленца4	1
<u>Индуктивность</u> 4	1
<u>Самоиндукция</u>	

<u>Переменный ток</u> 41
Действующие значения напряжения и силы переменного тока42
<u>Трансформатор</u> 42
<u>Коэффициент трансформации</u> 42
<u>Электромагнитные волны</u> 42
<u>10 класс</u> 43
<u>Кинематика</u> 43
Определение положения тела в пространстве
Координатный способ задания положения точки 43 Задание положения точки радиус-вектором 43
<u> эадание положения точки радиус-вектором</u> 43

Координатный способ описания движения точки	44
Траектория	44
Векторный способ описания движения точки	45
Перемещение тела	45
Равномерное движение тела	45
Скорость равномерного прямолинейного движения Мгновенная скорость	
Закон сложения скоростей	47
Скорость при равноускоренном прямолинейном движении	47

Размеры молекул	48
Относительная молекулярная (или атомная) масса вещества	49
Основное уравнение молекулярно-кинетической теории	50
<u>Тета</u>	50
Средняя кинетическая энергия молекулы	50
<u>Насыщенный пар</u>	51
Внутренняя энергия	52
КПД	54

Напряженность электрического поля54
11 класс54
Энергия связи ядра атома54
Выделение энергии при ядерной реакции55
Период полураспада56

7 класс

Цена деления

Цена деления - расстояние между самыми близкими делениями.

Погрешность измерения

Погрешность измерения равна половине цены деления.

Запись величины, с учетом погрешности

$$A = a \pm \Delta a$$
,

где А – измеряемая величина;

a — среднее значение, полученное в результате измерений величины; Δa — погрешность измерений (отклонение от среднего значения).

Скорость

$$cкорость = \frac{nymb}{время}$$
$$v = \frac{s}{t}$$
$$[v] = \left\lceil \frac{M}{c} \right\rceil$$

Скорость — векторная физическая величина.

Средняя скорость

$$\upsilon_{cp} = \frac{s}{t}$$

Путь

$$s = vt$$

Время

$$t = \frac{S}{V}$$

Путь в формулах, содержащих скорость и время, всегда находится в числителе и является большей численной величиной, по сравнению с числовым значением скорости и времени.

Плотность

$$n$$
лотность = $\frac{macca}{oбъем}$

$$\rho = \frac{m}{V}$$

$$\left[\rho = \frac{\kappa c}{M^3}\right]$$

$$m = \rho V$$

$$V = \frac{m}{\rho}$$

Объем

Macca

Р Масса в формулах, содержащих плотность и объем, всегда находится в числителе и является большей численной величиной,

$$\frac{\kappa z}{M^{3}} = \frac{1000 \, z}{(100 \, cm)^{3}} = \frac{1000 \, z}{100^{3} \, cm^{3}} = \frac{1000 \, z}{1000 \, 000 \, cm^{3}} = \frac{1}{1000} \frac{z}{cm^{3}} = 10^{-3} \, \frac{z}{cm^{3}}$$

$$\frac{z}{cm^{3}} = 1000 \, \frac{\kappa z}{m^{3}} = \frac{m}{m^{3}}$$

$$\frac{\kappa z}{m^{3}} = \frac{1000 \, z}{(10 \, \partial m)^{3}} = \frac{1000 \, z}{10^{3} \, \partial m^{3}} = \frac{z}{\partial m^{3}}$$

$$\frac{\kappa z}{m^{3}} = \frac{z}{\partial m^{3}}$$

$$1 \, \frac{z}{cm^{3}} = \frac{1000 \, \text{M}}{(10 \, \text{MM})^{3}} = \frac{1000 \, \text{M}}{10^{3} \, \text{MM}^{3}} = 1 \, \frac{\text{M}}{\text{M}}$$

по сравнению с числовым значением плотности и объема.

Плотность воды

$$\rho_{\text{\tiny BOObl}} = 1000 \frac{\kappa z}{\text{\tiny M}^3} = 1 \frac{m}{\text{\tiny M}^3} = 1 \frac{\kappa z}{\partial \text{\tiny M}^3} = 1 \frac{z}{\text{\tiny CM}^3} = 1 \frac{mz}{\text{\tiny $MM3$

Сила упругости. Закон Гука

$$F_{ynp} = k\Delta \ell$$
.

где k – жесткость, H/м;

 $\Delta \ell$ - удлинение (деформация), м.

$$\Delta \ell = \ell - \ell_0$$

где ℓ — конечная длина, м; ℓ_0 - начальная длина, м.

Вес тела

$$P = F_{TXX}$$
.

Вес тела — это сила, равная силе тяжести, приложенная к опоре или точке подвеса тела.

Сила тяжести

$$F_{TXX} = mg$$

Сила тяжести приложена к центу тяжести тела.

Давление

$$\partial a$$
вление = $\dfrac{cuna}{n$ лоща ∂b $p=\dfrac{F}{S}$ $\left[p=\dfrac{H}{M^2}=\Pi a\right]$

Давление жидкости

$$p = g\rho h$$

Сила Архимеда

$$F_{\rm A} = g \rho_{\scriptscriptstyle \mathcal{K}} V_{\scriptscriptstyle \rm T}$$

Механическая работа

работа = сила
$$\cdot$$
 путь $A = Fs$ [$A = H \cdot M = J \times J$]

Мощность

мощность =
$$\frac{pабота}{время}$$

$$N = \frac{A}{t}$$

$$1 \quad \textit{ватт} = \frac{1}{t} \quad \frac{\partial жоуль}{\partial c \, \textit{екунда}}$$

$$\left[N = \frac{\cancel{Д} \mathcal{H}}{c} = \textit{Bm} \right]$$

$$A = Nt$$

Момент силы

$$M = F\ell$$

Коэффициент полезного действия

$$extit{КПД} = rac{ extit{none3has} \quad extit{pa6oma}}{ extit{sampaченная} \quad extit{pa6oma}} \ extit{KПД} = rac{A_{\scriptscriptstyle \Pi}}{A_{\scriptscriptstyle 3}} \ \eta = rac{A_{\scriptscriptstyle \Pi}}{A} \cdot 100\% \ extit{}$$

Потенциальная энергия

$$E_{\pi} = F_{\text{\tiny TSIM}} h$$
$$E_{\pi} = mgh$$

Кинетическая энергия

$$E_{\kappa} = \frac{mv^2}{2}$$

8 класс

Калория

Калория - количество теплоты, необходимого для нагревания на 1 0 С 1 г (1 мл = 1 см 3) воды.

$$1$$
 кал = $4,19$ Дж

Удельная теплоемкость вещества

Удельная теплоемкость с — количество теплоты, необходимого для нагревания на 1 0 С тела массой 1 кг, Дж/(кг $^{.0}$ С).

Теплота, необходимая для нагревания (охлаждения) тела

Теплота, необходимая для нагревания тела (твердого, жидкого или газообразного) от температуры t_1 до температуры t_2

$$Q = cm(t_2 - t_1),$$

где с – удельная теплоемкость, $Дж/(кг^{.0}C)$;

т – масса, кг;

 t_2 — конечная температура, ${}^{0}C$;

 t_1 — начальная температура, 0 С.

Удельная теплота сгорания

Удельная теплота сгорания q — количество теплоты, выделяемой при полном сгорании 1 кг топлива, Дж/кг.

Теплота, выделяемая при сгорании топлива

Теплота сгорания топлива

$$Q = qm$$
,

где q – удельная теплота сгорания, Дж/кг.

Полная механическая энергия

$$E = E_{\pi} + E_{\kappa}$$

Закон сохранения энергии

Энергия замкнутой системы остается неизменной, она лишь переходит из одного вида энергии в другой

Теплота плавления

$$Q = \lambda m$$
,

где λ – удельная теплота плавления, Дж/кг.

Абсолютная влажность воздуха

Абсолютная влажность воздуха ρ_a - это фактическая плотность водяных паров, кг/м³.

Относительная влажность

$$\phi = \frac{\rho_{_{a}}}{\rho_{_{\scriptscriptstyle H}}} \!\cdot\! 100\%$$

$$\varphi = \frac{p}{p_0} \cdot 100\%$$

Теплота парообразования и конденсации

$$Q = Lm$$
,

где L- удельная теплота парообразования, Дж/кг.

Двигатель внутреннего сгорания

При вращении внизу и вверху кривошип совершает не значительные вертикальные перемещения (замирает) при сохранении своей угловой скорости, поэтому эти положения

называются «мертвыми» точками.

Такты 4-х тактного карбюраторного ДВС:

- 1.Впуск при движении поршня от верхней мертвой точки (ВМТ) до нижней мертвой точки (НМТ).
- 2.Сжатие горючей смеси при движении поршня от НМТ до ВМТ.
- 3. Рабочий ход от воспламенения горючей смеси свечей защигания в ВМТ до сгорания и расширения рабочего тела до НМТ.
- 4.Выпуск отработавших газов при движении поршня от HMT до BMT.

Энергия к поршню подводится со стороны коленвала от другого цилиндра, маховика или стартера во время тактов впуска, сжатия или выпуска.

Энергия к поршню, передаваемая коленвалу, подводится силой давления горячих газов во время рабочего хода.

Коэффициент полезного действия

$$ext{КПД} = rac{ ext{полезная} \quad ext{работа}}{ ext{теплота, полученная} \quad ext{от нагревателя}} \ ext{КПД} = rac{A_{ ext{n}}}{Q_{ ext{l}}} \ ext{\eta} = rac{Q_{ ext{l}} - Q_{ ext{2}}}{Q_{ ext{l}}} \cdot 100\%$$

Закон сохранения электрического заряда

$$\sum q = q_1 + q_1 + \dots + q_n = const$$

Сила тока

$$I = \frac{q}{t}$$

Электрическое напряжение

$$U = \frac{A}{q}$$

Закон Ома для участка цепи

$$I = \frac{U}{R}$$

Упражнение 19 [Физика. Перышкин. 8 класс]

5.При проведении опыта № 2 на рисунке в схему будет подключено сопротивление 2 Ом и стрелка амперметра покажет силу тока 1 А. В схеме электрической цепи изменится лишь сопротивление. При проведении опыта № 3 на рисунке в схему будет подключено сопротивление 4 Ом и стрелка амперметра покажет силу тока 0,5 А. В схеме электрической цепи изменится лишь сопротивление.

6.Дано: U = 4 B; I = 1 A. R - ?

Решение
$$R = \frac{U}{I} = \frac{4B}{1A} = 4OM$$

7.Дано: I = 1 A; $U_A = 2 B$; $U_B = 4 B. R - ?$

Решение

$$R_A = \frac{U_A}{I} = \frac{2B}{1A} = 2OM$$

$$R_B = \frac{U_B}{I} = \frac{4B}{1A} = 4OM$$

Ниже расположен график функции I = I(U), соответствующий большему сопротивлению.

Сопротивление

$$R = \frac{\rho \ell}{S}$$

Последовательное соединение

$$R = R_1 + R_2;$$

$$U = U_1 + U_2;$$

 $I = I_1 = I_2.$

Параллельное соединение

$$I = I_1 + I_2;$$

 $U = U_1 = U_2;$
 $1/R = 1/R_1 + 1/R_2.$

Работа электрического тока

$$A = UIt$$

Мощность электрического тока

$$P = UI$$

$$A = Pt$$

$$P = \frac{A}{t}$$

Закон Джоуля-Ленца

$$Q = I^2Rt$$

Угол отражения равен углу падения

Закон преломления света

$$\frac{\sin\alpha}{\sin\gamma} = n$$

Оптическая сила линзы

$$D = \frac{1}{F}$$

Работа газа и пара при расширении

Тепловыми двигателями называют машины, в которых внутренняя энергия топлива превращается в механическую энергию.

КПД теплового двигателя

Отношение совершенной полезной работы двигателя, к энергии, полученной от нагревателя, называют коэффициентом полезного действия теплового двигателя.

Задача. На какое расстояние необходимо оттянуть резину, чтобы пуля достигла скорости 300 м/с, равную скорости вылета пули из ствола?

Решение
$$F_{ynp} = k\Delta \ell$$
.

где k – жесткость, H/M; $\Delta \ell$ - удлинение (деформация), м.

Жесткость резины

$$k = 100 \text{ H/m};$$

По закону сохранения энергии потенциальная энергия растянутой резины переходит в кинетическую энергию пули

$$E_{\pi} = \frac{k\Delta\ell^2}{2}$$

$$E_{\kappa} = \frac{m\upsilon^2}{2}$$

$$E_{\pi} = E_{\kappa};$$

$$\frac{k\Delta\ell^2}{2} = \frac{m\upsilon^2}{2}$$

$$k\Delta\ell^2 = m\upsilon^2$$

$$\Delta\ell = \sqrt{\frac{m\upsilon^2}{k}}$$

Масса пули калибра 5,45

$$\begin{split} m &= 0{,}0034 \text{ кг} \\ \Delta \ell &= \sqrt{\frac{0{,}0034 \cdot 300^2}{100}} \approx 1{,}75 \text{ м} \\ \text{Масса пули калибра 5,45} \\ m &= 20 \text{ кг} \\ \Delta \ell &= \sqrt{\frac{20 \cdot 300^2}{100}} \approx 134 \text{ M} \end{split}$$

9 класс

Материальная точка

Материальная точка — это упрощенное представление тела в виде точки, имеющей массу тела. Тело можно представить в упрощенном виде материальной точки, если в решаемой задаче размерами, формой и вращением тела можно пренебречь из-за их несущественного влияния на результаты решаемой задачи.

Поступательным называется движение тела, при котором все точки тела в любой момент времени движутся одинаково. В этом случае достаточно определить движение одной точки тела, поэтому тело можно принять за материальную точку.

Система отсчета состоит из связанной с телом отсчета системой координат и прибора для измерения времени. Движение тела рассматривается относительно системы отсчета.

Путь и перемещение

Путь — длина траектории движения тела, являющаяся скалярной величиной.

Перемещение — это вектор, соединяющий начальное и конечное положение тела (материальной точки). Длина этого вектора также называется перемещением.

Если тело движется прямолинейно, то путь равен

перемещению. Путь и перемещение измеряются в метрах.

Скорость при прямолинейном равномерном движении

$$\vec{v} = \frac{\vec{s}}{t}$$

Первый закон Ньютона. Инерциальные системы отсчета

Закон всемирного тяготения

$$F = G \frac{m_1 m_2}{r^2}$$

где r – расстояние между центрами тяжести тел, м.

Сила притяжения тела массой m, находящегося на высоте h над поверхность планеты массой M с радиусом R. Расстояние между центрами тяжести тела и планеты r = R + h, поэтому сила взаимного притяжения тела и планеты определяется по формуле

$$F = G \frac{mM}{(R+h)^2}$$

Ускорение свободного падения

$$F_T = mg$$

$$F = G \frac{mM}{r^2}$$

где т – масса тела, кг;

M- масса космического объекта (планеты, спутника, астероида), кг.

$$F_{T} \approx F$$

$$mg = G \frac{mM}{r^{2}}$$

сократим т

$$g = G \frac{M}{r^2}$$

на высоте h от планеты ускорение свободного падения

$$g_h = G \frac{M}{(R+h)^2}$$

Чтобы ускорение свободного падения стало в k раз меньше ускорения свободного падения на поверхности планеты

$$\frac{g}{g_h} = k$$

необходимо определить высоту h подъема тела над поверхностью планеты

$$k = \frac{g}{g_h} = \frac{G\frac{M}{R^2}}{G\frac{M}{(R+h)^2}} = \frac{\frac{M}{R^2}}{\frac{M}{(R+h)^2}} = \frac{M}{R^2} \cdot \frac{(R+h)^2}{M} = \left(\frac{R+h}{R}\right)^2 =$$
$$= \left(\frac{R}{R} + \frac{h}{R}\right)^2 = \left(1 + \frac{h}{R}\right)^2$$
$$k = \left(1 + \frac{h}{R}\right)^2$$

Определим высоту

$$1 + \frac{h}{R} = \sqrt{k}$$

$$\frac{h}{R} = \sqrt{k} - 1$$

Чтобы сила тяжести уменьшилась в 4 раза

$$\frac{h}{R} = \sqrt{4} - 1$$

$$\frac{h}{R} = 1$$

необходимо чтобы тело приобрело высоту равную радиусу планеты h=R. Расстояние между центрами тяжести r=R+h=2R.

Чтобы сила тяжести уменьшилась в 9 раз

$$\frac{h}{R} = \sqrt{9} - 1$$

$$\frac{h}{R} = 2$$

необходимо чтобы тело приобрело высоту в 2 раза большую радиуса планеты h=2R. Расстояние между центрами тяжести r=R+h=3R.

Высоту можно определить по формуле

$$h = R\left(\sqrt{k} - 1\right)$$

Центростремительное ускорение

$$a_{\text{uc}} = \frac{v^2}{r}$$

Центростремительная сила

$$F_{\text{II c}} = ma_{\text{II c}}$$
;

$$F_{\text{uc}} = \frac{mv^2}{r}$$

Первая космическая скорость

Для спутника центростремительное ускорение равно ускорению свободного падения

$$a_{\text{II c}} = \text{g};$$

$$g = \frac{v^2}{r}$$

$$v^2 = gr$$

$$v = \sqrt{gr}$$
При $r = R_3 + h$

$$v = \sqrt{G \frac{M_3}{(R_3 + h)^2} \cdot (R_3 + h)}$$

$$v = \sqrt{G \frac{M_3}{R_3 + h}}$$

Импульс

Импульс

$$\vec{p} = m\vec{\upsilon}$$

Закон сохранения импульса

$$\sum \vec{p} = \overrightarrow{const}$$

Математическая запись закона сохранения механической энергии

$$E_{\Pi 1} + E_{K1} = E_{\Pi 2} + E_{K2}.$$

 $mgh_1 + \frac{mv_1^2}{2} = mgh_2 + \frac{mv_2^2}{2}$

Период

Период колебаний - время в секундах через которое колебание повторяется, то есть совершается одно полное колебание.

Свободные колебания

Свободные колебания — колебания, которые продолжаются за счет начального запаса энергии.

Колебательные системы

Колебательные системы — системы тел, способных совершать свободные колебания, например, маятники.

Положение равновесия

Положение равновесия — это положение в котором находилось тело до отклонения для совершения телом колебаний. Тело периодически стремится вернуться в положение равновесия. В положении равновесия потенциальная энергия колебательной системы равна нулю, а кинетическая энергия максимальна.

Амплитуда колебаний

Амплитуда колебаний — это максимальное (по модулю) отклонение (например, расстояние или угол) от положения

равновесия колеблющегося тела. В положении, соответствующем амплитуде колебаний, тело имеет максимальную потенциальную энергию. Нулевому отклонению от положения равновесия соответствует нулевая потенциальная энергия. За одно полное колебание тело 2 раза оказывается в положении равновесия.

Частота

Частота колебаний ν («ню») — это число колебаний за единицу времени.

Частота измеряется в Герцах

$$[v] = \left[\frac{1}{c}\right] = [\Gamma_{\text{II}}]$$
$$v = \frac{1}{T}$$

Произведение периода на частоту является величиной постоянной, равной единице

$$Tv = 1$$
$$T = \frac{1}{v}$$

Собственная частота колебаний

Собственная частота колебательной системы — это частота свободных колебаний.

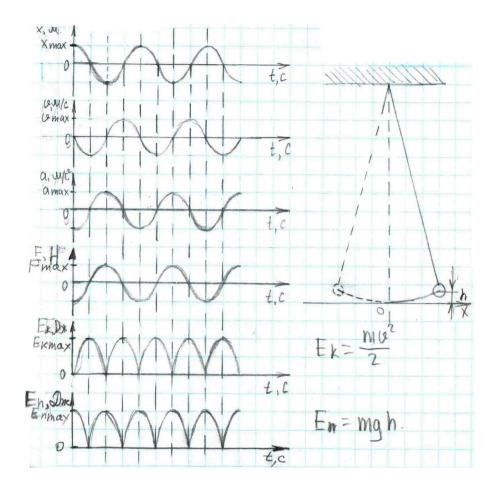
Противоположные фазы

Противоположные фазы — это колебания, при которых противоположны движения к положению равновесия колеблющихся систем в любой момент времени.

Одинаковые фазы

Одинаковые фазы — это колебания, при которых совпадают движения к положению равновесия колеблющихся систем в любой момент времени.

Разность фаз


Разность фаз - это колебания, при которых не совпадают движения к положению равновесия колеблющихся систем в какойто момент времени. Если частоты колеблющихся систем равны, то разность фаз сохраняется с течением времени.

Гармонические колебания

Гармоническими (синусоидальными) колебаниями называется периодически повторяющиеся изменения физической величины в зависимости от времени, происходящие по закону синуса или косинуса. Гармонические механические колебания вызывает сила, пропорциональная и противоположно направленная смещению колеблющегося тела от положения равновесия.

Задача. Нитяной маятник отклонили от положения равновесия на расстояние x_{max} , за начало отсчета времени принимается это положение маятника. Построить примерные графики зависимости от времени горизонтальной координаты с началом отсчета в положении равновесия, скорости, ускорения, суммы сил, действующих на шарик, кинетической, потенциальной энергии.

Решение

Определение периода по времени полных колебаний

Зная время t полных N колебаний можно определить период

$$T = \frac{t}{N}$$

Затухающие колебания

Затухающими называются колебания при которых амплитуда колебаний уменьшается постепенно до нуля. Механические колебания затухают под действием сил трения.

Вынужденные колебания

Вынужденные колебания — это незатухающие колебания под дейсвием периодически изменяющейся внешней силы, называемой вынуждающей силой.

Установившиеся вынужденные колебания

Установившиеся вынужденные колебания — это колебания при которых амплитуда и частота вынужденных колебаний не изменяются. Частота вынуждающей силы является и частотой установившихся вынужденных колебаний.

Резонанс

Резонанс — достижение амплитуды установившихся вынужденных колебаний наибольшего значения при совпадении частоты вынуждающей силы ν и собственной частоты ν_0 колебательной системы.

Волны

Волны — возмущения, удаляющиеся от источника их возникновения и распространяющиеся в пространстве.

Упругие волны

Упругие волны — в упругой среде распространяющиеся механические возмущения.

Продольные и поперечные волны

В продольных волнах колебания происходят вдоль направления распространения этих волн. Продольные механические волны являются волнами сжатия и разрежения, поэтому могут распространяться в любой среде — газообразной, жидкой и твердой.

В поперечных волнах колебания происходят перпендикулярно направления распространения этих волн. Упругие поперечные волны являются волнами сдвига, поэтому могут распространяться только в твердой среде.

В вакууме механические волны возникнуть не могут, поэтому тикающие часы, помещенные под колпак, по мере откачивания воздуха из под колпака становятся менее слышны и в вакууме звук не может распространяться.

В продольных (поперечных) волнах колебания происходят вдоль (поперек, перпендикулярно) направления распространения этих волн.

Лукашик 894

Волна является поперечной. Длина волны $\lambda=25$ см = 0,25 м. Амплитуда колебаний A=0,2 м.

Д. 115. Разность фаз

1)0;

$$\Delta \varphi = \frac{3\pi}{2}$$

Звуковые колебания

Звуковыми называются колебания в диапазоне частот от 16 Γ ц до 20000 Γ ц.

Основной частотой (основным тоном или просто тоном)

является самая низкая (самая малая) частота сложного звука.

Обертоны сложного звука имеют частоты в целое число раз большие частоты его основного тона, поэтому они называются высшими гармоническими тонами.

Скорость распространения волны

$$\upsilon = \frac{\lambda}{T}$$

$$v = v\lambda$$
.

Упражнение 32 [Перышкин, 9 класс]

3.Металл и воздух упругие среды, поэтому распространяют звук. Скорость звука в металле выше, чем в воздухе, поэтому при ударе по одному концу длинной металлической трубы один раз, на другом конце трубы будет слышно два удара, один в результате распространения звука в металле, а другой — по воздуху.

4.Дано:
$$t_{3вука} = 2$$
 с; $t_{паровоза} = 34$ с. $v_{паровоза} - ?$

Решение

Скорость звука свистка или паровоза определяются по одной формуле

$$\upsilon = \frac{S}{t}$$

Отсюда расстояние, которое прошел звук от свистка до наблюдателя

$$_{S}=\upsilon _{_{^{3BYKa}}}t_{_{^{3BYKa}}}$$

это же расстояние проехал паровоз от места подачи свистка до наблюдателя

$$S = S_{паровоза} = S_{звука},$$

поэтому скорость паровоза

$$\upsilon_{naposo3a} = \frac{s}{t_{naposo3a}}$$
 $s = 340 \text{ m/c} \cdot 2 \text{ c} = 680 \text{ m}.$
 $\upsilon_{naposo3a} = \frac{680 \text{ m}}{34 \text{ c}} = 20 \frac{\text{m}}{\text{c}} = 72 \frac{\text{km}}{\text{y}}$

5. При удалении слышимый удар будет отставать от видимого удара по колоколу. За 1 секунду звук проходит 340 метров, поэтому на таком расстоянии видимый удар по колоколу, распространяющийся мгновенно, начнет совпадать со слышимым ударом.

Правило левой руки

Если со стороны ладони левую руку будет пронизывать перпендикулярная проводу (скорости заряда) составляющая вектора магнитной индукции, четыре пальца направить в сторону положительного направления тока (скорости положительного заряда) или против направления движения отрицательного заряда, то отведенный в сторону большой палец покажет направление действия силы на проводник (движущиеся заряды) или заряд (сила Ампера или Лоренца).

Магнитная индукция

Индукцией магнитного поля или магнитной индукцией называется векторная физическая величина \overrightarrow{B} , характеризующая магнитное поле.

Модуль вектора магнитной индукции В прямо пропорционален модулю силы, действующей на проводник с током, перпендикулярный магнитным линиям, и обратно пропорционален силе тока I в проводнике и длине ℓ проводника:

$$B = \frac{F}{I\ell}$$

Единицей измерения магнитной индукции является тесла

(Тл), связанная с другими единицами

$$1 T \pi = 1 \frac{H}{A \cdot M}$$

Линии индукции магнитного поля или линии магнитной индукции — это магнитные линии, имеющие касательные, совпадающие с направлением вектора магнитной индукции в каждой точке магнитного поля.

Однородным называется магнитное поле, у которого вектор магнитной индукции \overrightarrow{B} одинаков во всех его точках. Неоднородное магнитное поле характеризуется различными по величине или направлению векторами индукции \overrightarrow{B} .

Магнитный поток

Магнитный поток Φ (поток вектора магнитной индукции) через плоский контур прямо пропорционален модулю вектора магнитной индукции B, площади контура S и косинусу угла α между вектором \overrightarrow{B} и нормалью \overrightarrow{n} к плоскости контура.

$$\Phi = BS\cos\alpha$$
.

Если вектор \overrightarrow{B} и нормаль \overrightarrow{n} к плоскости контура совпадают, угол $\alpha=0$, то есть вектор \overrightarrow{B} перпендикулярен плоскости контура, то $\cos\alpha=\cos 0=1$ и магнитный поток

$$\Phi = BS$$
.

Электромагнитная индукция

Изменения магнитного потока, пронизывающего площадь внутри замкнутого контура проводника вызывают появление переменного индукционного тока в этом проводнике. Если контур не пронизывает магнитный поток, или магнитный поток,

пронизывающий контур не изменяется, то индукционный ток не появляется в контуре. Если контур движется вдоль линий однородного магнитного поля или вращается в плоскости, перпендикулярной линиям магнитного поля, то магнитный поток, пронизывающий контур не изменяется, индукционный ток в контуре не появляется.

Правило Ленца

Индуктивность

Самоиндукция

Самоиндукция — это возникновение индукционного тока самоиндукции в катушке при изменении в ней силы тока.

Энергия магнитного поля тока

Энергия магнитного поля тока

$$E_{\text{MAP}} = \frac{Li^2}{2}$$

Переменный ток

Переменным называется электрический ток, периодически меняющийся со временем по модулю и направлению.

Действующие значения напряжения и силы переменного тока

Действующие значения напряжения и силы переменного тока равны напряжению и силе тока постоянного тока, выделяющего в проводнике тепла столько же, сколько выделит и переменный ток.

Трансформатор

Трансформатор — это устройство для уменьшения или увеличения переменных напряжения и силы тока. Увеличение напряжения в повышающем трансформаторе сопровождается уменьшением силы тока, уменьшение напряжения в понижающем трансформаторе вызывает увеличение силы тока.

Коэффициент трансформации

Коэффициент трансформации

$$k = \frac{U_1}{U_2} = \frac{N_1}{N_2}$$

При k > 1 $U_1 > U_2$ трансформатор является понижающим.

При $k \le 1 \ U_1 \le U_2$ трансформатор является повышающим.

Электромагнитные волны

Электромагнитная волна — это порождающие друг друга и распространяющиеся в пространстве переменные электрическое и магнитное поля.

Напряженность электрического поля

$$\vec{E} = \frac{\vec{F}}{q}$$

10 класс

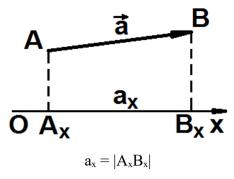
Кинематика

Определение положения тела в пространстве

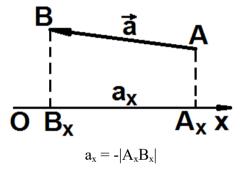
Тело отсчета — физическое тело,

Координатный способ задания положения точки

Начало системы координат помещается в точку отсчета, тогда положение тела в пространстве однозначно определяется координатами тела в этой системе координат.


Задание положения точки радиус-вектором

Радиус-вектор — это отложенный из начала координат в заданную точку вектор \vec{r} . Длина радиус-вектора (модуль) показывает расстояние от начала координат до заданной точки.


Положение точки в пространстве однозначно определяется направлением радиус-вектора и его длиной или проекциями радиусвектора на оси координат.

Проекция вектора на ось - это длина отрезка между проекциями начала и конца вектора.

Если проекция начала вектора на ось имеет меньшую координату, чем проекция конца вектора, то проекция вектора на ось берется с положительным знаком:

Если проекция начала вектора на ось имеет большую координату, чем проекция конца вектора, то проекция вектора на ось берется с отрицательным знаком.

Если вектор параллелен оси координат, то длина вектора равна модулю проекции на эту ось. Проекции на другие оси координат равны нулю.

Координатный способ описания движения точки

Траектория

Траектория — это линия движения точки в пространстве. Прямолинейным называется движение точки по прямой линии. Криволинейным называется движение точки по кривой линии.

Векторный способ описания движения точки

Закон движения точки в векторной форме показывает как изменяет длину и поворачивается радиус-вектор, задающий положение точки с течением времени

$$\vec{r} = \vec{r}(t)$$

Перемещение тела

Перемещение тела — это вектор перемещения, проведенный из начального в конечное положения тела.

При векторном способе перемещение тела задается изменением радиус-вектора $\Delta \vec{r}$ за интервал времени $\Delta t = t_2 - t_1$

$$\Delta \vec{\mathbf{r}} = \vec{\mathbf{r}}_2 - \vec{\mathbf{r}}_1,$$

где \vec{r}_2 - радиус-вектор, задающий положение тела в момент времени t_2 ;

 $ec{r}_{_{\! 1}}$ - радиус-вектор, задающий положение тела в момент времени $t_{_{\! 1}}.$

Длина пути, являющаяся скалярной величиной, больше или равна перемещения тела

$$s \ge |\Delta \vec{r}|$$
.

Равномерное движение тела

Равномерным называется движение тела, проходящего за равные промежутки времени одинаковые пути по прямолинейной или криволинейной траектории.

Скорость равномерного прямолинейного движения

При перемещении тела $\Delta \vec{r}$ за время Δt скорость равномерного прямолинейного движения тела

$$\vec{v} = \frac{\Delta \vec{r}}{\Delta t}$$

Перемещение тела $\Delta \vec{r}$ за интервал времени $\Delta t = t - t_0$ $\Delta \vec{r} = \vec{r} - \vec{r}_0 \ ,$

где \vec{r} - радиус-вектор, задающий положение тела в момент времени t;

 $\vec{r}_{\!_0}$ - радиус-вектор, задающий положение тела в момент времени $t_{\!_0}$.

Скорость равномерного прямолинейного движения тела

$$\vec{\mathbf{v}} = \frac{\vec{\mathbf{r}} - \vec{\mathbf{r}}_0}{\mathbf{t} - \mathbf{t}_0}$$

Примем $t_0 = 0$, тогда

$$\vec{\mathbf{v}} = \frac{\vec{\mathbf{r}} - \vec{\mathbf{r}}_0}{t}$$

$$\vec{v}t = \vec{r} - \vec{r}_0$$

Отсюда радиус-вектор в момент времени t

$$\vec{r} = \vec{r}_0 + \vec{v}t$$

Проекция на ось Ох

$$\mathbf{x} = \mathbf{x}_0 + \mathbf{v}_{\mathbf{x}} \mathbf{t}.$$

Мгновенная скорость

Мгновенная скорость равна пределу приращения перемещения к приращению времени, стремящегося к нулю.

Мгновенная скорость в каждый момент времени направлена по касательной к траектории.

Закон сложения скоростей

При движении тела со скоростью \vec{V}_1 относительно системы отсчета K_1 (подвижной), движущейся со скоростью \vec{V} относительно системы отсчета K_2 (неподвижной), то скорость тела \vec{V}_2 относительно K_2 равна сумме скоростей \vec{V}_1 и \vec{V} :

$$\vec{\mathbf{v}}_2 = \vec{\mathbf{v}}_1 + \vec{\mathbf{v}}$$

Скорость тела относительно системы K_1

$$\vec{\mathbf{v}}_1 = \vec{\mathbf{v}}_2 - \vec{\mathbf{v}}$$

Скорость системы отсчета K_1 относительно K_2

$$\vec{\mathbf{v}} = \vec{\mathbf{v}}_2 - \vec{\mathbf{v}}_1$$

Скорость при равноускоренном прямолинейном движении

При постоянном изменении скорости тела $\Delta \vec{v}$ за время Δt ускорение прямолинейного движения тела постоянно

$$\vec{a} = \frac{\Delta \vec{v}}{\Delta t}$$

Изменение скорости тела $\Delta \vec{v}$ за интервал времени $\Delta t = t - t_0$ $\Delta \vec{v} = \vec{v} - \vec{v}_0$

где \vec{v} - скорость тела в момент времени t;

 $\vec{v}_0^{}$ - скорость тела в момент времени $t_0.$

Ускорение прямолинейного движения тела

$$\vec{a} = \frac{\vec{v} - \vec{v}_0}{t - t_0}$$

Примем $t_0 = 0$, тогда

$$\vec{a} = \frac{\vec{v} - \vec{v}_0}{t}$$

$$\vec{a}t = \vec{v} - \vec{v}_0$$

Отсюда скорост в момент времени t

$$\vec{v} = \vec{v}_0 + \vec{a}t$$

Проекция на ось Ох

$$\mathbf{v}_{\mathbf{x}} = \mathbf{v}_{0\mathbf{x}} + \mathbf{a}_{\mathbf{x}}\mathbf{t}.$$

Размеры молекул

Объем V слоя масла

$$V = Sd$$
,

где S – площадь поверхности, M^2 ;

d – толщина слоя масла, равная размеру молекулы масла, м.

Размер молекулы оливкового масла

$$d \approx 1.7 \cdot 10^{-9} \text{ M} = 1.7 \text{ HM}.$$

Размер атома водорода

$$d \approx 10^{-10} \text{ m} = 10^{-1} \text{ Hm}.$$

Размер молекулы оливкового масла в 17 раз больше атома водорода.

Диаметр молекулы воды

$$d \approx 3 \cdot 10^{-10} \text{ M} = 0.3 \text{ HM}.$$

Относительная молекулярная (или атомная) масса вещества

Относительная молекулярная (или атомная) масса вещества:

$$M_r = \frac{m_0}{\frac{1}{12} m_{0C}},$$

где Mr – относительная молекулярная (атомная) масса, а.е.м.;

 m_0 – масса молекулы (или атома) вещества, кг.

 $m_{0C}-$ масса атома углерода, $m_{0C}=1{,}995{\cdot}10^{-26}$ кг.

Масса молекулы или атома

$$m_0 = M_r \frac{1}{12} m_{0C}$$

1/12 массы атома углерода равна 1 атомной единице массы (1 а.е.м.):

$$m_{0C}/12 = 1$$
 a.e.м. = 1,6625·10⁻²⁷ кг.

Масса атома (молекулы) m_0 равна относительной атомной (молекулярной) массе M_r , умноженной на атомную единицу массы (а.е.м.)

$$m_0 = M_r \cdot a.e.м. = M_r \cdot 1,66 \cdot 10^{-27}$$
 кг.

Относительные атомные массы веществ, указанные в Периодической системе химических элементов Д. И. Менделеева, округляются до целого числа. Например, относительная атомная масса водорода равна 1, углерода — 12, кислорода — 16.

Для определения относительной молекулярной массы вещества, необходимо по его химической формуле установить сколько атомов определенных элементов содержится в веществе.

Например, определим относительную молекулярную массу воды.

В молекуле воды H_2O содержится 2 атома водорода и атом кислорода. Относительная молекулярная масса воды равна сумме относительных атомных масс 2-х атомов водорода и атома кислорода

$$2 \cdot M_{rH} + M_{rO} = 2 \cdot 1 + 16 = 18$$

Основное уравнение молекулярно- кинетической теории

$$p = \frac{1}{3} n m_0 \overline{v}^2$$

Средняя кинетическая энергия молекулы

$$\overline{E}_{\kappa} = \frac{m_0 \overline{v}^2}{2}$$

$$p = \frac{2}{3} n \frac{m_0 \overline{v}^2}{2}$$

$$p = \frac{2}{3}n\overline{E}_{\kappa}$$

Тета

$$\frac{pV}{N} = \theta_t = kT$$

Средняя кинетическая энергия молекулы

$$\overline{E}_{\kappa} = \frac{3}{2} \frac{p}{n}$$

Концентрация молекул

$$n = \frac{N}{V}$$

$$[n] = \left[\frac{1}{M^3}\right] = [M^{-3}]$$

$$\overline{E}_{\kappa} = \frac{3}{2} \frac{p}{\frac{N}{V}} = \frac{3}{2} \frac{pV}{N}$$

$$\overline{E}_{\kappa} = \frac{3}{2} \frac{pV}{N}$$

$$\overline{E}_{\kappa} = \frac{3}{2} kT$$

Насыщенный пар

При комнатной температуре в закрытом сосуде число молекул, покидающих поверхность воды равно числу молекул, возвращающихся в воду (устанавливается динамическое равновесие). За 1 секунду это число примерно равно 10^{22} молекул на 1 см² площади поверхности воды. За минуту примерно один моль воды (число Авагадро) испаряется и конденсируется. Молярная масса воды 18 г/моль. 1 моль воды занимает объем 18 см³ или 18 миллилитров, то есть примерно 11-тая часть стакана воды 200 мл. С 11 см² поверхности воды испаряется и конденсируется стакан воды за минуту. Из формулы площади круга

$$S = \frac{\pi d^2}{4}$$

Диаметр круглого сосуда

$$d=\sqrt{\frac{4S}{\pi}}=2\sqrt{\frac{S}{\pi}}$$

$$d = 2\sqrt{\frac{11}{\pi}} \approx 3,76 \text{ cm}$$

это чуть меньше диаметра стакана.

Если закрыть крышкой полный стакан, то при комнатной температуре за минуту вода из этого стакана успеет полностью испариться и снова конденсироваться.

Внутренняя энергия

$$U = NE_{\kappa}$$

Подставляем среднюю кинетическую энергию молекул

$$\overline{E}_{\kappa} = \frac{3}{2} \frac{pV}{N}$$

$$U = N \frac{3}{2} \frac{pV}{N} = \frac{3}{2} pV$$

$$U = \frac{3}{2} pV$$

$$\overline{E}_{\kappa} = \frac{3}{2} kT$$

$$U = \frac{3}{2} NkT$$

$$N = vN_{A}$$

$$U = \frac{3}{2} vN_{A}kT$$

Универсальная молярная газовая постоянная

$$R = N_a k$$

$$R = 8.31 \frac{Дж}{моль \cdot K}$$

Внутренняя энергия

$$U = \frac{3}{2}vRT$$

Количество вещества

$$v = \frac{m}{M}$$

$$U = \frac{3}{2} \frac{m}{M} RT$$

Задача. Определить внутреннюю энергию 2 молей гелия при температуре $27~^{\circ}$ C.

Дано: v = 2 моля, He, t = 27 °C. U - ?

Решение

Внутренняя энергия

$$U = \frac{3}{2}vRT$$

Универсальная молярная газовая постоянная

$$R = 8.31 \frac{Дж}{моль \cdot K}$$

Абсолютная температура

$$T = 273 + t$$

 $T = 273 + 27 = 300 \text{ K}$

Внутренняя энергия

$$U = \frac{3}{2} \cdot 2 \cdot 8,31 \cdot 300 = 7479$$
 Дж

$$[U] = \left[\text{моль} \cdot \frac{\text{Дж}}{\text{моль} \cdot \text{K}} \cdot \text{K}\right] = [\text{Дж}]$$

Ответ: $U = 7 479 \, \text{Дж}$.

КПД

Напряженность электрического поля

Напряженность электрического поля в данной точке — это векторная величина, равная отношению вектора силы, действующей на точечный заряд в данной точке, к этому заряду.

Направление вектора напряженности электрического поля совпадает с направлением силы, если в поле помещен положительный заряд. Направление вектора \overrightarrow{E} противоположно направлению силы, если в поле помещен отрицательный заряд.

11 класс

Энергия связи ядра атома

Энергия связи — это энергия необходимая на расщепление атома на отдельные нуклоны.

Энергия связи ядра атома

$$E_{cB} = \Delta mc^2 = (Zm_p + Nm_n - m_g)c^2$$
.

Z – количество протонов, заряд ядра, порядковый номер в таблице Менделеева, количество электронов в нейтральном атоме.

Масса ядра равна массе нейтрального атома $m_{\rm A}$ минус масса электронов в оболочке нейтрального атома

$$m_{\mbox{\tiny M}} = m_{\mbox{\tiny A}}$$
 - $Zm_{\mbox{\tiny e}}$,

где $m_e = 0,00055$ а.е.м. - масса электрона.

Масса нейтрального атома лития $_{_{3}}^{7}$ Li $_{_{MA}} = 7,01601$ а.е.м.

Масса ядра атома лития $^{7}_{3}Li$

$$m_g = 7.01601 - 3.0.00055 = 7.01436$$
 a.e.m.

Масса протона $m_p = 1,00728$ а.е.м.

Масса нейтрона $m_n = 1,00866$ а.е.м.

Энергия связи лития
$${}^{7}_{3}\mathrm{Li}$$
 $E_{c_{B}}=(3\cdot1,00728+4\cdot1,00866-7,01436)\cdot1,66\cdot10^{-27}\cdot3\cdot10^{8}=2$ способ определения энергии связи

Дефект масс

$$\Delta m = 3.1,00728 + 4.1,00866 - 7,01436 = 0,04212$$
 a.e.m.

Энергия связи лития
$$^{7}_{_3}\mathrm{Li}$$
 $E_{_{CB}} = \Delta m \cdot 931,5 \ M \ni B = 0,04212 \cdot 931,5 \ M \ni B = 39,23478 \ M \ni B.$

Удельная энергия связи лития $^{7}_{3}\mathrm{Li}$

$$E_{vii} = E_{cr}/A = 39,23478/7 = 5,6 \text{ M} \circ \text{B}.$$

Выделение энергии при ядерной реакции

Если энергия связи слева больше, чем справа, то в результате ядерной реакции энергия поглощается.

Если энергия связи слева меньше, чем справа, то в результате ядерной реакции энергия выделяется.

Если энергия связи больше, значит и больше энергии требуется на расщепление атома на отдельные нуклоны.

Период полураспада

Период полураспада Т данного радиоактивного элемента — это время, за которое количество радиоактивных атомов уменьшается в 2 раза.

За 2 периода полураспада количество радиоактивных атомов уменьшается в 4 раза. За 3 периода — в 8 раз.

Количество N оставшихся радиоактивных элементов за время t

$$N = N_0 2^{-\frac{t}{T}},$$

где N_0 – исходное количество радиоактивных атомов вещества

Сайт: www.super-code.ru e-mail: da.irk.ru@mail.ru

Опубликовано 09.05.17